# FDS v5 - Multi-step Combustion and Other Code Improvements

Jason Floyd, Ph.D. Grant 60NANB5D1205



#### **Overview**

- 2 and 3 parameter mixture fraction and related code changes
- Validation examples
- Misc. new features

# **Two-parameter Mixture Fraction**



Mass of fuel converted to CO<sub>2</sub> and associated products

$$Z_1 + Z_2 = Z$$



# **Two-parameter State Relations**



F = Degree of completion of combustion (F=0.5) for clarity,  $N_2$  and  $H_2O$  have been omitted



#### **Reaction Kinetics**

- Reaction is infinitely fast
- Reaction prohibited if the oxygen content in the current cell and all adjacent cells is below a critical value for the cell's temperature
- User can disable



### Combustion

- FDS v4 Gradient of Z at Z<sub>F</sub>
   Surface
  - Did not always get correct HRR for well ventilated fires
  - Unrealistic volumetric HRR
  - Cannot turn off product formation
- FDS v5 Fuel +  $O_2$  → Products
  - Guarantee the HRR for well ventilated fires
  - Extinction means no product formation
  - Lesser issue of unrealistic volumetric HRR





# **Three-parameter Mixture Fraction**



$$Z_1 + Z_2 + Z_3 = Z$$



# **Three-parameter State Relations**



F = Degree of completion of combustion (F=0.5) C = Degree of conversion of CO (C=0.5) for clarity,  $N_2$  and  $H_2$ O have been omitted



# **Reaction Kinetics**

- Reaction 1: Fuel +  $O_2 \rightarrow CO + H_2O$ 
  - ◆Infinitely fast, T vs. O₂
- Reaction 2: CO +  $O_2 \rightarrow CO_2$ 
  - ◆Infinitely fast
  - ◆Base on nearby O₂ levels





## &REAC for Mixture Fraction

#### FDSv4

- Specify ideal molar stoichiometry and yields for minor species
- Not easy to deal with fuels containing elements other than C,H, and O.

#### FDSv5

- Specify the fuel molecule
- Specify the yields of minor products
- Heat of combustion
  - actual: reflects minor products
  - ideal: FDS corrects to account for minor products







## &REAC for Finite Rate

$$CH_4 + 1.5 O_2 \rightarrow CO + 2 H_2O$$

$$\frac{d[CH_4]}{dt} = -A_1[CH_4]^{-0.3}[O_2]^{1.3}e^{-E_{a,1}/RT}$$

$$CO + 0.5 O_2 \rightarrow CO_2$$

$$\frac{d[CO]}{dt} = -A_2[CO]^1[O_2]^{0.25}[H_2O]^{0.5}e^{-E_{a,2}/RT}$$

#### FDSv4

- Above was not possible
- One reaction
- Rate exponents the same as stoichiometry

#### ■ FDSv5

- NU(): Reaction stoichiometry
- N(): Arrhenius exponents. Now possible to specify a reaction rate dependence that includes non-participating species



## Flux Correction

**Mass Fraction** 

"Ringing" in solution of species transport equation in regions of high gradients.

Want an approach to shift the mass in a conserving manner to "correct" the solution. This will increase numerical diffusion but prevent non-physical solutions (for example negative species mass fractions)



## **Flux Correction**







Correction needed: Higher than surroundings with influx No correction needed: Higher than surroundings with outflux Correction needed: Higher than absolute limit

Mass flux direction

0.2 Mass fraction  $Z_1$ 



### Radiation

- FDS v2-v4
  - used RADCAL (Grosshandler, 1993) to compute an absorbtivity lookup table: κ(Z,T)
  - Non-MF computations could only have fixed background κ.
  - FVM solver for transport (Hostikka)
- FDS v5
  - κ(Z,T) becomes κ(Z<sub>1</sub>, Z<sub>2</sub>, Z<sub>3</sub>,T). Time consuming to initialize and costly memory storage for a similar lookup table
  - Wish to generate κ non-mixture fraction computations
  - Still use FVM solver

### Radiation

- Compare random states of combustion (fuel, species, temperature, path) for the absorptivity of all species to sum for each species at that mass fraction
  - 96 % summed values within 10 % of combined values
  - 99.5 % within 20 %
  - Outliers are predominately cold with very high levels of soot (not likely to occur in a typical simulation)

#### FDSv5

- Computes a table of κ(Y,T) and κ(I,J,K) is computed by a weighted sum
- Can now generate κ(I,J,K) for finite rate





# Wolfhard-Parker Slot Burner (Norton, Smyth, Miller, Smooke 1992)

2D laminar, methaneair, diffusion flame

Measured temperature and many major and minor species at elevations near the burner surface





# Slot Burner – FDS v5



# **Comparison with Data**



# **Beyler Hood**

- Adjustable height burner located beneath a hood
- Varied distance from hood lip to burner surface, burner diameter, fuel, and fire size
- Hood exhaust rate manually controlled to prevent spill from the hood lip
- Measured gas concentrations in the exhaust duct





## **Results**





# **RSE Experiments**

(Bryner, Johnsson, Pitts, 1994)

- 40 % of an ISO-9705 room
- Elevated methane burner
- Gas concentration measurements in upper layer at front and back of compartment





# 50 kW & 400 kW



Time: 300.0

Time: 300.0

# $CO_2$ : FDS v4 + v5 vs. Data

(Bryner, Johnsson, Pitts, 1994)



#### CO: FDS v4 + v5 vs. Data

(Bryner, Johnsson, Pitts, 1994)





#### **New RSE Tests**

(Johnsson, Bundy, Hamins)

- Currently conducting testing using RSE
- Primary goal to reduce dataset uncertainties for use as FDS validation
- Gaseous, liquid pool, and liquid spray fuels





# **RSE Test #7 - Heptane**





## **US NRC Validation Cases**

VTT, Finland



Sandia/FM (USA)



NIST, USA



NBS, USA



iBMB, Germany





# Water + Fuel Sprays

- New droplet type structures
- Allow for simultaneous fuel and water sprays
- Each particle type is assigned its own outputs







### **Control Functions**

- Added the ability for any point measurement device to add/remove and obstacle, open/close a vent, start/stop a sprinkler.
- Added the ability to do additional logic with a control function input: &CTRL
  - ANY (1 of X), ALL (X of X), ONLY (N of X), AT\_LEAST (N or greater of X)
  - TIME\_DELAY: wait a period of time from an event
  - RESTART, KILL: dump restart, stop execution
  - CUSTOM: define on/off behavior as a function of a real valued input



**Pre-Action Sprinkling** 

- 2 of 4 detectors open valve
- 30 s to flood pipe

&DEVC, &PROP: OD

must also have open head

d pipe ave open 

or 2

&DEVC, &PROP: RTI, Temp



### **Smoke Detection**

- Added two new smoke detector models:
  - linear beam detector.
     Specify beam source/target locations and obscuration for alarm
  - Aspiration detector:
     Specify sampling locations, flowrate, transport time, and obscuration for alarm







# %^\$!!! 256 Column Limit



 csv output files will now automatically split into mutiple files to avoid exceeding Excel column limit. Disable with COLUMN\_DUMP\_LIMIT flag on &DUMP



# **Outputs**

- FDSv4 Each type (SLCF, PL3D, THCP, etc) computed is own quantities. Not all possible outputs were available for each type (only a handful allowed for ISOF).
- FDSv5 Each type now calls the same DEVC updating routine to determine either a single point, a plane, or a volume.

Table 4.3: Summary of all Output Quantities

| Output QUANTITY               | Symbol                                    | Units             | File Type |
|-------------------------------|-------------------------------------------|-------------------|-----------|
| ABSORPTION_COEFFICIENT        | К                                         | 1/m               | D,I,P,S   |
| ADIABATIC_SURFACE_TEMPERATURE | T <sub>AST</sub> (see Sec. 4.16.13)       | °C                | B,D       |
| BURNING_RATE                  | $\dot{m}_f''$                             | kg/m²/s           | B,D       |
| carbon dioxide                | $X_{CO_2}(Z)$                             | mol/mol           | D,I,P,S   |
| carbon monoxide               | $X_{CO}(Z)$                               | mol/mol           | D,I,P,S   |
| CONVECTIVE_FLUX               | $\dot{q}_{c}''$ (Section 4.16.12)         | kW/m <sup>2</sup> | B,D       |
| DENSITY                       | ρ                                         | kg/m <sup>3</sup> | D,I,P,S   |
| DIVERGENCE                    | $\nabla \cdot \mathbf{u}$                 | $s^{-1}$          | D,I,P,S   |
| DROPLET_DIAMETER              | $2r_d$                                    | μm                | PA        |
| DROPLET_VELOCITY              | $ \mathbf{u}_d $                          | m/s               | PA        |
| DROPLET_TEMPERATURE           | $T_d$                                     | °C                | PA        |
| DROPLET_MASS                  | $m_d$                                     | kg                | PA        |
| DROPLET_AGE                   | $t_d$                                     | S                 | PA        |
| DROPLET_FLUX_X                | $\dot{m}_w^{\prime\prime}$                | kg/m²/s           | P,S       |
| DROPLET_FLUX_Y                | $\dot{m}_w^{\prime\prime}$                | kg/m²/s           | P,S       |
| DROPLET_FLUX_Z                | $\dot{m}_w^{\prime\prime}$                | kg/m²/s           | P,S       |
| extinction coefficient        | K (Section 4.16.9)                        | 1/m               | D,I,P,S   |
| fuel                          | $X_F(Z)$                                  | mol/mol           | D,I,P,S   |
| GAUGE_HEAT_FLUX               | See Section 4.16.12                       | kW/m <sup>2</sup> | B,D       |
| Н                             | $H =  \mathbf{u} ^2/2 + \tilde{p}/\rho_0$ | $(m/s)^2$         | D,I,P,S   |
| HEAT FLOW                     | See Section 4.16.15                       | kW                | D         |
| HEAT_FLUX                     | See Section 4.16.12                       | kW/m <sup>2</sup> | B,D       |
| HRR                           | ∫ q''' dV                                 | kW                | D         |
| HRRPUV                        | $\dot{q}^{\prime\prime\prime}$            | kW/m <sup>3</sup> | D,I,P,S   |
| INCIDENT_HEAT_FLUX            | See Section 4.16.12                       | kW/m <sup>2</sup> | B,D       |
| INSIDE_WALL_TEMPERATURE       | See Section 4.16.3                        | °C                | D         |
| LAYER HEIGHT                  | See Section 4.16.10                       | m                 | D         |
| LOWER TEMPERATURE             | See Section 4.16.10                       | °C                | D         |
| MASS FLOW                     | See Section 4.16.15                       | kg/s              | D         |

B=BNDF, D=DEVC, I=ISOF, P=PL3D, PA=PART, S=SLCF



# **CFD: Colorful Fluid Dynamics**

#### Motivated by laziness

- Tedious to determine RGB values for non-primary colors.
- Most graphics programs do 0-255 integer and FDSv4 did 0.-1. real

#### ■ In FDSv5

- RGB is now 0 to 255 integer (don't have to convert to real)
- ◆ 500+ colors names defined





